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ABSTRACT

The ability to proactively offer assistance promises to make per-
sonal agents more helpful to their users. We characterize the prop-
erties desired of proactive behaviour by a personal assistant agent
in the realm of task management, and present an extended agent
cognition model that features a meta-level layer charged with iden-
tifying potentially helpful actions and determining when it is appro-
priate to perform them. The reasoning that answers these questions
draws on a theory of proactivity that describes user desires and a
model of helpfulness. Operationally, assistance patterns represent
a compiled form of this knowledge, instantiating meta-cognition
over the agent’s beliefs about its user’s activities as well as over
world state. We have implemented the resulting generic framework
for proactive goal generation and deliberation as part of a personal
assistant agent in the desktop domain.
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1. INTRODUCTION
Proactive behaviour is seen as an essential characteristic of au-

tonomous and semi-autonomous agents [28]. We are interested in
developing intelligent personal assistant agents that can aid a hu-
man in managing and performing complex tasks in an office desk-
top setting. Our overall goal is to reduce the amount of effort re-
quired by the human to complete the tasks she intends. Effort here
encompasses both the activities necessary to perform the tasks, and
the cognitive load in managing and monitoring them. Thus, a per-
sonal assistant agent may aid its user directly by performing tasks
on her behalf or in conjunction with her [14], and indirectly through
actions such as providing context for her work, minimizing inter-
ruptions, and offering suggestions and reminders [7].
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We are exploring these ideas within a system for intelligent per-
sonalized assistance called Cognitive Assistant that Learns and Or-
ganizes (CALO) [35]. The focus for a CALO agent is to support
a busy knowledge worker in dealing with the twin problems of in-
formation and task overload [23]. Specifically, CALO’s task man-
agement capabilities are grounded in a module called Project Exe-
cution Assistant (PExA) [26]; in this paper we will refer simply to
CALO. CALO’s current task-related capabilities are grounded in
delegative behaviour, in which the system adopts intentions only
in response to being explicitly assigned goals by its user. In this
fashion, CALO can perform a variety of routine office tasks dele-
gated by its user, such as arranging meetings and completing online
forms, as well as more open-ended processes such as purchasing
equipment or office supplies and arranging conference travel.

An obvious limitation within the current delegative model is the
lack of a proactive capability that would enable the agent to antic-
ipate needs, opportunities, and problems, and then act on its own
initiative to address them. We are interested in developing proactive
behaviours along these lines, to increase the overall effectiveness of
the system as a personal assistant for task management.

This paper describes our approach to operationalizing proactive
behaviour within an assistive agent. We augment a Belief-Desire-
Intention (BDI) [31] framework with a meta-cognition layer that
reasons about what tasks may be appropriate for the agent to per-
form and when initiative should be taken to perform them. Such
reasoning is inherently meta level: in addition to requiring delib-
eration over a model of the user’s state and intentions, it further
requires that the agent reason about its capacity to perform poten-
tially helpful tasks given its current commitments and capabilities.

Guided by a theory of proactivity, our implementation of this
reasoning is grounded in assistance patterns. These generic rules
represent a compiled form of knowledge about how to assist with
task management. The literature studies the techniques by which
a proactive assistant can reason over the modality and timing of
its activity (such as predicting the potential disruption versus the
potential beneficial effects). Thus, we do not focus on this aspect,
instead drawing on the techniques studied.

Our primary contribution is to address the combined questions
of when to take initiative for task management and what actions to
manifest it. We provide an approach that is theoretically grounded
while being practically realizable. Our work provides the basis
for proactive assistance in the CALO system by means of context-
sensitive suggestions. After situating our work in Sect. 2, we char-
acterize the properties desired of proactive behaviour in Sect. 3. In
Sect. 4 we present an extended BDI framework with a meta-level
layer designed to support proactive goal generation, along with re-
quirements on a theory of proactivity to drive this behaviour. In
Sect. 5 we describe our operationalization of proactive assistance,
implementing the framework in the CALO agent system.
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2. RELATED WORK
Efforts to design personal assistants often span several points on

the continuum from zero to full automation. The Office Assistant
in Microsoft Office was based “in spirit” on the Lumière project
[19]. Although more limited in scope than CALO, Lumière shares
an ambition to help a user. The domain of the project was user
tasks in an office software package; Lumière deliberately consid-
ered proactive behaviour. In expressing the rationale, Horvitz et al.
[19] describes the agent reasoning:

[W]e have also been interested in the question of deliber-
ating about when to step forward to assist a user. We believe
strongly that such intrusions should be done in a careful and
conservative manner, with the express approval of users.

Lumière provides what we call application-focused proactivity:
the agent offers assistance in the context of a single application.
Other examples of application-focused proactivity include interface
agents [23] and, although not often construed as an agent, adaptive
user interfaces While this type of proactivity is certainly within the
scope of our work, we are interested in broader forms of proac-
tive behaviour that extend beyond any single application. We will
introduce two other forms of proactivity.

The Electric Elves project [4] developed personal assistants with
a range of functions related to supporting a busy office worker —
an application domain similar to that of CALO — including a set of
proactive capabilities designed to further specific user objectives re-
lated to meeting scheduling. Electric Elves was focused on shared
activities within a team setting.

There has been much recent work on assistive technologies to aid
people with cognitive disabilities in managing their daily activities,
in which proactivity plays an important role (e.g., [16]). These
systems monitor a person’s actions to understand what she is doing,
and interact when appropriate to provide reminders, situationally
relevant information, and suggestions to aid in problem solving.

Theories of collaborative problem solving clearly relate to the
notion of proactive assistance: user–agent collaborative activity
can be viewed as one aspect of task management. For the most
part, these theories extend BDI models of agency [31] to incorpo-
rate notions of joint beliefs and commitments. For example, Joint
Intention theory [5] formalizes the communication acts between
agents to establish and maintain joint belief and intention. Shared-
Plans theory [14] specifies collaborative refinement of a partial plan
by multiple agents, handling hierarchical action decomposition and
partial knowledge of belief and intention.

COLLAGEN [32] is an example of a system that instantiates
these ideas, drawing on the SharedPlans theory. It provides a frame-
work for building assistive agents that collaborate with a human
to achieve tasks together. Its assistance is based around precoded
models of tasks; the current task state is described as a collaborative
dialogue consisting of a plan tree (tracking the state within the task
model) and a focus stack (tracking the current focus of attention).
By reasoning over these structures, COLLAGEN responds to user
actions and utterances by acting or communicating appropriately.

Applications of Joint Intentions have focused on dialogue man-
agement in agent collaboration (e.g., [21]). Applications of Shared-
Plans have included also task allocation and analysis of helpful be-
haviour [15], but are limited in terms of proactive scope. Proactive
sharing of information, in an extended SharedPlans formulation,
has been studied in the multi-agent team setting [22].

Collaborative problem solving and proactive assistance are both
rooted in the notion of an agent taking action to assist another. In-
deed, a collaborative agent will often need to act proactively to ful-
fill its commitments to its partner. Proactive assistance goes beyond
collaborative problem solving, however, in that an agent may take

Figure 1: Task management in the CALO system

actions unilaterally on behalf of its user without any joint agree-
ment as to the desirability or suitability of the actions. In fact, it is
precisely this degree of autonomy that makes proactive assistance
potentially valuable, as it enables the agent to support its user with-
out interfering with her normal activities.

Although a theory of proactivity will have much in common with
theories of collaboration such as Joint Intentions and SharedPlans,
whereas those frameworks focus on high-level characterizations
of how and when to provide assistance, an operational theory of
proactivity requires further elaboration of these concepts. Theories
of collaboration do not speak to how an agent weighs the cost and
benefits of potential goals and the plans to achieve them to assess
which are appropriate to perform [34, 9]. Moreover, a proactive
assistive agent must have an explicit model of user desires, in addi-
tion to current user goals and plans, as well as a theory that defines
how those can be furthered by actions that the agent is capable of
performing. The requirements for and organization of these latter
reasoning functions are our topic for this paper.

3. TOWARD HELPFUL PROACTIVE ASSIS-

TANCE FOR TASK MANAGEMENT
Ethnographic studies of human work habits and task manage-

ment (e.g., [1, 7]) reveal that people usually achieve all their im-
portant tasks. We become adept at multi-tasking and remembering
what really matters; however, we fail to perfectly achieve tasks with
soft deadlines, or to remember less-critical details. It is these areas
where assistance technology can thus provide greatest utility.

Our starting point is that the user has entered a description of
her tasks and tasks assigned to her agent into an electronic to-do
list [1, 6], thus obviating the need to infer user intent [19, 9]. We
take these to be a concrete manifestation of intent descending from
some of her goals. Similarly, we assume that the user employs
electronic artifacts to keep track of her calendar, and works within
an instrumented desktop environment. These are all valid for the
desktop context and system infrastructure of a CALO agent.

3.1 Task Management with a CALO Agent
We use the term task management to refer broadly to the plan-

ning, execution, and oversight of tasks associated with work as-
signments. Three technologies provide direct assistance with task
management in the CALO system: a Task Executor, a Todo Man-
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ager, and a Calendar Manager. They are shown in Fig. 1, together
with the modules that operationalize the proactive behaviour we
describe in the coming sections.

The Task Executor provides the ability to perform tasks on be-
half of or in conjunction with the user. Execution is enabled by a li-
brary of workflows that encode processes that can be followed to ac-
complish a particular task. Workflows are composed of lower-level
tasks (“steps”), which are annotated to indicate which agent(s) are
permitted to perform them. Declaratively, the workflows describe
the subtasks that the user, the agent, or other agents achieve to fulfill
a goal, together with constraints between the subtasks (e.g., subtask
ordering). Procedurally, the workflows provide recipes that CALO
can instantiate into a plan to achieve a given (sub)task. Workflows
in the library might be executable only by the user, only by the
agent, by either, or by both together. The Task Executor is built
as a SPARK agent [24], with the procedural aspects of workflows
encoded in the SPARK procedure representation language. Work-
flows can be specified manually or taught to the system through a
learning by demonstration framework [11].

The Todo Manager provides a framework to aid the user in orga-
nizing and tracking tasks. The CALO Todo Manager, called Towel
[6], provides basic functions found in typical to-do managers that
help the user remember what needs to be done and when. How-
ever, Towel goes beyond such systems through its support for both
the delegation of tasks to teammates and the dispatching of tasks
for execution by the Task Executor. For task dispatching, the user
can assign a task to CALO by selecting from a menu of automated
capabilities. Alternatively, the user can define a task informally
by providing a textual description of it; Towel will provide the
user with a list of possible workflows that it believes it could per-
form to help accomplish this task [12]. For example, given the
task description “Plan project review meeting”, Towel may sug-
gest a ScheduleMeeting workflow as potentially useful. Thus,
CALO may be told or can infer a mapping from a subset of the tasks
to formal models within a task ontology (i.e., the tasks have asso-
ciated semantic descriptions). Further, associated with each task in
Towel can be a rich body of information about provenance (source,
time of creation), requirements (deadlines, priority, expected dura-
tion), current state, and relations to other tasks (semantic groupings,
task/subtask relations). The Calendar Manager supports the user in
scheduling meetings and managing temporal commitments [2]. In-
dividual calendar entries are defined by their start and end times,
the organizer, the participants, category, importance, and location.

These task management tools provide a range of services and in-
formation that can be used to determine user state to inform proac-
tive reasoning. One such capability is an estimation of user ‘busy-
ness’, which is determined by combining temporal commitments
from the user’s calendar with estimated workloads calculated by
considering deadlines and durations for tasks in the Todo Manager.

Complementary services within the CALO system can further
inform reasoning for proactive assistance. An Expertise Finder
identifies people within an organization who may have expertise
on particular topics. A Relevance Engine identifies documents and
emails that are potentially related to tasks. A Delegation Learner
develops models that recommend specific individuals to whom tasks
might be assigned, based on prior delegation events. Finally, and
significantly for the context of proactive behaviour, a Workflow
Tracker estimates the workflow the user is currently pursuing from
her desktop activities. We describe it in detail in Sect. 5.

3.2 Characterizing Proactive Behaviour
Within such a setting, three challenges must be addressed in

order to develop effective personal assistant agents. We distin-

guish tasks performed solely by the user (user tasks) from those
performed solely by the agent (agent tasks), and those performed
jointly in partnership (shared tasks).

What form of initiative? A personal assistant agent acts when
delegated tasks by its user, and when it is obliged to act by commit-
ments it has made (e.g., an agreement with a merchant to purchase
an item on its user’s behalf). Our hypothesis is that the agent can
act under its own initiative at other times, in order to assist its user.
A pivotal control issue is answering the question of under what cir-
cumstances the agent should consider some proactive action.

What actions to take? We envision a personal assistant agent aid-
ing its user in many ways. On some occasions its assistance will be
initiated proactively, on other occasions by the user or as a result
of actions by another agent. Our focus is formed by the combined
questions of when to take initiative for task management and what
actions to manifest it. Although we will not address the subject
in detail, it is important to recognize that the agent should weight
whether the actions it is considering will be helpful to the user.
Moreover, since there will be a measure of uncertainty about the
current situation, the user’s goals and focus of attention, and the
effects of its actions, the agent should be careful, safe, and deferent
to the user. As will be explained, our approach is to have the agent
by default offer suggestions that the agent acts, rather than make
decisions or take action in a fully autonomous fashion.

When and how to perform the actions? Once the agent has de-
cided to or is compelled to act, it must deliberate further about the
modality and timing of its action [20, 10]. Is it better to do noth-
ing, to suggest, to confirm then act, or to act without consulting the
user? To act now or later? To interrupt or not?

To these three challenges we might add the challenge of how to
learn to do it better: a helpful assistant should seek to broaden and
refine its problem-solving skills through learning [28, 2].

3.3 Examples of Proactive Behaviour for Task
Management

Fig. 2 provides a selected list of possible proactive activities that
an assistive agent might perform on behalf of its user to support task
management in an office setting (such as that of CALO). We divide
the list into four categories: Act directly, Act indirectly, Collect
information, and Remind, notify, ask. All the items in Fig. 2 except
those in italic are currently implemented in the CALO system. The
following scenario illustrates how a proactive behaviour on the part
of an intelligent assistant can provide value in the office domain.

CALO observes the items currently in your electronic to-do list,
what you are currently working on, what you have delegated to
your CALO and to people, and your commitments for the week
ahead. CALO assesses that your workload is likely to be uncom-
fortably high at the end of the week. Via a message in a peripheral
window, CALO offers you a reminder of an important meeting early
next week, with the suggestion that a paper review (on your to-do
list) could be transferred to a colleague (whom CALO identifies as
having appropriate expertise and time in his schedule), to leave you
time to focus on the meeting. In addition, CALO begins to prepare
background material for the meeting without being explicitly asked.
It attaches the relevant documents to the item in your to-do list and
the event in your calendar.

This scenario illustrates two distinct types of proactive behaviour
for an agent. The first type, which we call task-focused proactiv-
ity, involves providing assistance for a task that the user either is
already performing or is committed to performing; assistance takes
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• Act directly

– perform the next step or steps of a shared task
– perform or prepare for future steps of a shared task now
– initiate the first step of a shared or agent task
– suggest (shared) tasks the agent can take over and perform
– establish a learning goal (i.e., to learn new capabilities)

• Act indirectly

– suggest a user task be delegated to a teammate, or that the user
offer to take on the task of a teammate

– suggest a meeting be rescheduled
– suggest a lower-priority task be postponed to free resources
– suggest a task be promoted or demoted in priority
– suggest (better) ways to achieve a (shared) task
– anticipate failures of (shared) tasks and look for ways to re-

duce the failure likelihood or the impact of failure

• Collect information

– gather, summarize information relevant to a user or shared task
– monitor the status of tasks delegated to a teammate
– monitor and summarize resource levels and commitments
– analyze possible consequences/requirements of a (shared) task

• Remind, notify, ask

– remind of upcoming deadlines and events
– remind of the user’s next step in a shared task
– ask for feedback or guidance from user
– ask for clarification or elaboration of a (shared) task
– monitor and filter incoming messages

Figure 2: Possible proactive activities in task management

the form of adopting or enabling some associated subtasks. Task-
focused proactivity is exemplified in the above scenario by CALO
collecting background information in support of a scheduled meet-
ing. We note that systems such as COLLAGEN are designed for
task-focused operation, although not task-focused proactivity.

The second type of proactive behaviour, which we call utility-
focused proactivity, involves assistance related to helping the user
generally with her set of tasks, rather than contributing directly to
a specific current task. An example of this type occurs in the sce-
nario when CALO takes the initiative to recommend transferring
a paper review task in response to the detection of high workload
levels. This action is triggered not by a motivation to assist with
any individual task on the user’s to-do list, but rather in response to
a higher-level motivation (namely, workload balancing).

3.4 Principles for Proactive Behaviour
To guide the development of proactive agent behaviour, we set

out nine principles, akin to the principles for intelligent mixed-
initiative user interfaces [18]: valuable: advances the user’s inter-
ests and tasks, in the user’s opinion; pertinent: attentive to the cur-
rent situation; competent: within the scope of the agent’s abilities
and knowledge; unobtrusive: not interfering with the user’s own
activities or attention, without warrant; transparent: understand-
able to the user; controllable: exposed to the scrutiny and accord-
ing to the mandate of the user; deferent: gracefully unimposing;
anticipatory: aware of current and future needs and opportunities;
and safe: minimizes negative consequences.

These principles reflect the centrality of the user and her experi-
ence. The agent’s actions are valuable only if they ultimately add
value for the user. They assist only if they are performed in a man-
ner that takes account of the user’s focus and immediate as well as

longer-term needs. Horvitz et al. for instance capture the behaviour
sought in the Lumière project: “The sensibility of an intuitive, cour-
teous butler . . . potentially valuable suggestions from time to time
. . . genuine value . . . minimal disturbance.” [19]

Prior research on assistive agents emphasizes ease of understand-
ing by the user of the agent’s operation, together with ease of direct-
ing, ignoring and correcting the agent, as well as working entirely
without it [4, 16, 18, 13]. Transparency and controllability are es-
sential to build trust, which is especially important in an agent with
an extended life cycle, such as a user’s assistant [28, 13], and even
more so if the agent acts on its own initiative.

Returning to the earlier example, CALO’s actions are pertinent
to the important upcoming meeting. CALO itself is not capable
of reviewing the paper; identifying a colleague who potentially is
able, CALO does not delegate the task from your to-do list auto-
matically, but leaves you in control to take the suggestion or not.
This suggestion and the preparation of background materials are
both safe, defined in this case by an absence of changes of state
other than a gain in information. Throughout, CALO’s actions are
unobtrusive: the communication is via a peripheral message with
context, and the completed information gathering is again in con-
text, attached to the relevant artifacts in your working environment.

4. A BDI FRAMEWORK FOR PROACTIVE

ASSISTANCE
Having characterized helpful proactive assistive behaviour, we

now introduce — more concretely — an extended BDI model of
agency designed to support such behaviour. Specifically, we define
a meta-level layer that augments a BDI framework to enable (1)
identification of potentially helpful actions, and (2) determination
of when those actions should be performed.

4.1 Background
The well-known BDI model provides an explicit, declarative rep-

resentation of three key mental structures of an agent: informa-
tional attitudes about the world (Beliefs), motivational attitudes on
what to do (Desires), and deliberative commitments to act (Inten-
tions) [31]. The primary deliberative processes of a BDI agent can
be broadly characterized as focusing on goal selection (i.e., iden-
tifying what intentions to pursue) and action selection (i.e., how
to pursue them). This reasoning necessarily takes into account the
current BDI cognitive state of the agent to determine what is fea-
sible and desirable given current beliefs and commitments. BDI
agent frameworks such as Jadex [30], PRS, and SPARK [24] im-
plement these decision-making processes as a combination of base-
and meta-level reasoning: simple strategies are hard-coded in the
base level of the agent but more sophisticated agent-specific meta-
level strategies can be invoked as needed. In particular, meta-level
reasoning can support control of deliberation, conflict resolution,
identification of learning goals, and as described below, proactive
behaviour by an intelligent assistant.

The reasoning that enables CALO’s current (non-proactive) task-
related capabilities draws on a delegative BDI model [25]. This
framework distinguishes different types of goals: Candidate Goals
(goals that may make the combined set of goals inconsistent if they
are adopted) and Adopted Goals. The latter set has key properties
(consistency, feasibility [3, 8]) that are simply assumed of goals in
many implemented BDI systems.1 The delegative BDI model also
incorporates forms of user-specified guidance and preferences on
1Many implemented BDI agents assume that the desires of the agent are consistent
and feasible, and effectively treat goals and desires as equivalent; thus, these systems
might better be called B(G)I implementations [30].
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Figure 3: Extended BDI agent architecture for proactive assistance

the execution of these tasks, and on the agent’s cognition, called
advice. However, the framework in the various aspects of its meta-
reasoning does not encompass deliberation in order to manifest
proactive assistance by generating Candidate Goals.

4.2 Architecture for Proactive Assistance
Fig. 3 depicts proactive goal generation in an extension of the

delegative BDI agent architecture. As usual in a BDI formula-
tion, the agent’s base-level cognition reasons about how to realize
Adopted Goals as intentions. Multiple forms of meta-cognition are
depicted to the right. In addition to the usual BDI meta-cognition
over aspects such as agent control — for example, over goal selec-
tion — we show proactive goal generation and filtering, an exten-
sion to the prior delegative BDI model.

A personal assistive agent can be thought of as holding an over-
arching meta-desire of being a helpful assistant to its user, which
we denote d̂. We can envision a limited number of additional de-
sires at both the base and meta-levels. One desire might be to learn
(although one could construe this as the agent bettering itself in or-
der to become a better assistant). Indeed, in principle, the majority
of an assistive agent’s desires — or at least goals that might arise
from them — can be considered as consequences of the overarch-
ing high-level desire d̂. In practice, an explicit representation of
motivational attitudes will be chosen, to avoid the complexity of
excessive first-principles reasoning during execution.

Candidate Goals (CGs) are created through two mechanisms. At
the base level, they arise from the agent’s motivations to achieve
tasks delegated by the user. At the meta-level, CGs are generated
proactively as depicted, as a result of deliberation over a theory
of proactivity, elements of which are described in Sect. 4.3. This
aspect of meta-cognition, motivated by the high-level desire d̂, rea-
sons over agent beliefs about user, agent, and world states, user and
agent capabilities, as well as a theory of helpful activity.

As we have noted, the agent’s generation of a CG does not imply
that it will necessarily adopt the CG. The control aspect of meta-
level cognition chooses how to execute any adopted goal; in par-
ticular, the agent might wait before acting, suggest that it acts, ask
whether it should act, just act, and so forth [19, 33, 10]. This fil-
tering of proactively-generated CGs is accomplished by the meta-
layer denoted proactive goal filtering in Fig. 3.

The architecture does not impose the characteristics of the agent’s
behaviour, which will vary from agent to agent. Similarly, it does
not specify the mechanism for reasoning to determine which CGs
to create for transferal to the base-level portion of the agent. This
strategy can be freely specified according to the character of the
agent by appropriate instantiation of the theory of proactivity. Sect. 5
describes our implemented approach to CG generation, adoption,
and assistance manifestation.

4.3 Elements of Proactivity
Sect. 3 identified three challenges for an agent to support proac-

tive assistance: what form of assistance, what actions to take, and
when and how to perform the actions. Recall that our focus is the
first two challenges in the context of task management. We now
propose requirements on a theory of proactivity designed to sup-
port a proactive agent in meeting these challenges. This theory is
composed of subtheories for user desires, helpful activity, and safe
actions. With our focus on the operationalization of proactive as-
sistance, we do not develop formally the subtheories.

Theory of User Desires. A theory of user desires is necessary to
describe the long- and short-term objectives of the user. Such a the-
ory provides the means to assess the situated value of each potential
agent action in terms of the user’s objectives. The question for the
agent is then: when are actions of varying degrees of safety, utility,
and timeliness to be considered? If a task has many safe actions
and high perceived benefit, should it be barred because one action
is potentially unsafe, e.g., accepting a meeting on the user’s behalf?

While application- and task-focused proactivity seek to provide
assistance to the user with immediate, tangible goals, utility-focused
proactivity by contrast addresses more general objectives of the
user. Utility-focused proactivity requires a representation of the
user’s unstated interest goals (in the terminology of the OCC cog-
nitive model [29]) as well as explicitly stated achieve and replen-
ishment goals.2 Since interest goals differ between individuals, a
helpful assistive agent requires such a model (perhaps learned) of
its user, in order to assess the value of agent actions.

Further, meta-reasoning over the sufficiency of the model (i.e.,
2We might say that interest goals correspond to desires in the BDGI model; achieve
goals map directly to goals of achievement, while replenishment goals can be seen as
a form of maintenance goal.
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how complete, current, and accurate the agent believes is its knowl-
edge of the user’s desires) guides the agent’s goal deliberation and
also guides its consideration of learning goals.

Theory of Helpful Activity. A theory of helpful activity defines
the principles to direct the agent’s reasoning to determine what ac-
tions would most help the user now and in the future. In particular,
this theory encodes the logic for selecting among possible inten-
tions and the means to pursue them, given a characterization of
current user desires. The various approaches in the literature to op-
erationalize a theory of helpful activity include bayesian modelling
[19] and logical rules [10].

Theory of Safe Actions. A theory of safe actions is necessary to
define bounds on what an agent is allowed to do when perform-
ing tasks proactively. In particular, given that the agent will be
acting on its own initiative without user awareness of its actions,
it is important that only actions with benign or positive effects be
performed, so as not to interfere with user activities or change the
world in unexpected ways.

Anticipating the consequence of actions requires suitable models
of effects, temporal projection (for instance, with Linear Temporal
Logic [17]), and possibly dedicated data structures and reasoning
(e.g., [36]). The definition of a safe action varies from context
to context, as a conjunction of factors such as: maintains world
state; maintains world state except to increase knowledge; immedi-
ately reversible without cost; immediately reversible with negligi-
ble cost; reversible without cost; reversible with negligible cost; re-
versible; without negative consequence on user tasks; without neg-
ative consequence on tasks of others in the team; and with limited
use of shared (team) resources.

5. OPERATIONALIZING PROACTIVITY:

ASSISTANCE PATTERNS
As Grosz and Kraus [14] note, BDI and collaboration theories

are less often directly implemented in practical agent designs as
much as used to provide a “system specification”, or even simply
as a source of insight informing the design. For example, COL-
LAGEN’s discourse reasoning algorithms originate from reasoning
with the SharedPlans intend that construct, but do not implement
reasoning over such constructs.

Similarly, our implementation of the meta-level components for
proactive goal generation and filtering in Fig. 3 avoids reasoning
over explicit theories of user desires, helpful activities, and safe
actions. Rather, for proactive goal generation, these theories are
compiled into a form of meta-knowledge that we term assistance
patterns (APs). Assistance patterns provide a form of knowledge
representation that bridges the gap from the high-level desire d̂ to
help the user to more concrete motivations for the agent. APs are
defined in terms of a set of trigger conditions that, when satisfied,
identify one or more Candidate Goals to be considered for passing
to the base-level component of the agent. AP triggers are defined
in terms of beliefs about the user’s mental state (e.g., goals, focus
of attention), the agent’s own state, and the world state.

The assistance patterns of an agent encode the manifestations of
proactive behaviour given in Fig. 2. Two example APs are shown
in Fig. 4 as pseudocode, with cue denoting the triggering condi-
tions. AP reduceUserBusynessByDelegatingTask cues
from an estimation that the user’s busyness is above a threshold;
the AP generates a Candidate Goal to suggest that a task be dele-
gated to another agent, as we saw in the earlier example scenario.
AP commenceNextStepOfSharedWorkflow cues from the
trigger that there exists a shared task for which the agent can per-
form the next step; the CG that results is that the agent suggest

reduceUserBusynessByDelegatingTask
cue: user busyness > threshold AND

there exists a user task t AND
CALO knows that t can be potentially delegated

body: select agent A from set of potential delegatees
create CG to suggest that user delegates t to A

commenceNextStepOfSharedWorkflow
cue: there exists shared workflow w AND

w has a subtask t’ not yet commenced AND
t’ is immediate successor of a completed subtask AND
t’ is feasible for CALO to perform AND
no advice prohibits CALO from commencing t’

body: create CG to suggest that CALO commence t’

Figure 4: Sample assistance patterns

it perform this step. A third example is an AP that cues from a
belief that the user has overlooked possible synergy between two
tasks (contrast [36]); the CG that results is that the agent propose
notifying the user accordingly.

We implemented a set of APs within the operational CALO agent,
using the BDI-based SPARK system [24] augmented by an explicit
representation of Candidate and Adopted Goals. All the activities
of Fig. 2 are implemented, except those denoted in italic. The
pseudocode of APs such as those in Fig. 4 is readily translatable
into SPARK’s procedural representation, leveraging its meta-level
events and meta-reasoning capabilities.

We emphasize that many APs are generic: they are general ca-
pabilities that apply in any circumstance within the domain of the
agent. For example, the AP to perform the next step of a shared task
may be expected to be relevant as a source of CG generation for all
CALO users in all circumstances. While the focus of our imple-
mentation has been a set of universally applicable patterns for task
management, we envision certain patterns that are specialized to a
given context. For example, one user might teach her CALO an
assistance pattern that the agent should send her a text message, if
there is no response from her secretary over a certain period.

Workflow Tracker informs Assistance Patterns.
To assist its user with task management, a personal agent re-

quires an understanding of the user’s goals, and knowledge of means
by which the user and/or the agent can achieve these goals. As de-
scribed in Sect. 3.1, part of the context of task management in the
CALO system is the user’s list of her tasks in the Todo Manager.
Recall that some of these tasks are associated with formal mod-
els, i.e., system-understandable descriptions of the user’s goal, and
that CALO’s task library consists of a dual declarative/procedural
representation of multi-agent workflows to achieve a given goal.

When a workflow involves user steps, keeping track of progress
is challenging. For example, in one workflow, the user first down-
loads the paper and the review form attached to the review request
email. Next, the paper is printed, and the review form is filled
out. Finally, the completed review form is sent back as a reply
to the request email. It would be burdensome for CALO to re-
quire the user to explicitly indicate commencement and comple-
tion of every step she undertakes. We call the problem of automati-
cally identifying the workflow and the user’s current step workflow
recognition and tracking. As shown in Fig. 1, we instrumented
the desktop (Windows Explorer) and common applications such
as email clients (Thunderbird), web browsers (Firefox and Inter-
net Explorer), and office applications (Word, PowerPoint, Excel) so
that user-performed actions are captured and logged. The Workflow
Tracker module identifies whether the stream of captured interac-
tion events matches with any of the workflows in the task library
and, if so, tracks its current progress.
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Figure 5: Task-focused proactive assistance provided by CALO

Variants of the Hidden Markov Model (HMM) have been used
for this kind of activity tracking problem. However, in the desktop
domain, steps in a workflow are often associated with a particular
desktop object, such as an email, file, or webpage, best described
as a parameter for the step (e.g., OpenFile("review.doc")).
To accommodate workflow parameters, CALO uses a Logical Hi-
erarchical HMM [27] as its representation of the workflow model.3

Workflow recognition can then be viewed formally as a filtering
problem on the Logical Hierarchical HMM representing the work-
flow. We adopt a particle filter approach to avoid the prohibitive
cost of exact inference. Given a stream of user interaction events,
the algorithm returns a distribution over the possible steps in the
workflow (including a ‘Background’ state). This allows CALO
both to identify the most likely step and to identify the most likely
parameter values for this step. This information from the Workflow
Tracker is provided to the Execution Monitor (Fig. 1) and exploited
by the assistance patterns to generate situationally relevant Candi-
date Goals, both task focused (i.e., relating to the task that Work-
flow Tracker identifies the user is working on) and utility focused.

Suggestion Manager filters CG generated by APs.
The principle of goal-directed focus in deliberation [3, 5] applies

to APs as much as it does to other aspects of agent deliberation,
such as the agent’s regular control loop (compare Fig. 3). Accord-
ingly, generation of a proactive CG need not entail its adoption.
Consideration of APs and the CGs they generate is informed by the
context of the agent’s current mental state and its beliefs about the
user’s state — including its estimate of the user’s current task —
and about the world. At any point, the agent may deliberate over
whether it should consider checking the AP triggers at all, and over
whether to adopt any CGs the APs may generate.

To support this kind of meta-reasoning, which instantiates the

3The Logical HMM extends the HMM state to take the form of a ground atom in a
first-order language. State transitions can be written in the form of logical rules, such
as OpenFile(X) → EditDocument(X) : 0.8. Here, variable X ranges over the set
of documents in the system, and 0.8 represents the transition probability. Similarly,
the observation model is OpenFile(X) → WordOpenEvent(X) : 1.0. In order to
accommodate irrelevant activities between workflow steps (e.g., the user reads some
other emails), a distinguished ‘Background’ state is included in the model; it can gen-
erate any observable event uniformly.

theory of helpful activity, and further to provide contextually sensi-
tive assistance, we implemented a Suggestion Manager, as shown
in Fig. 1. The Suggestion Manager provides CALO with the proac-
tive goal filtering meta-layer depicted in Fig. 3. It deliberates over
whether and how to proactively act, complementing the existing
situations where CALO is obliged to act, such as when a subtask is
explicitly delegated by the user.

All our APs result in a CG to create a suggestion to the user;
none lead to autonomous action. Thus, we defer towards the in-
terface end of the Interface–Proactivity continuum. The Sugges-
tion Manager reasons over the proactively generated CGs to decide
whether to manifest each suggestion (or simply drop it), and if so,
when and how. Fig. 5 shows a suggestion that originates from the
AP commenceNextStepOfSharedWorkflow, unobtrusively
manifest in a peripheral sidebar (top right). If the user accepts a
suggestion, then CALO acts on the body of the suggestion. For ex-
ample, it commences the next step of the workflow: here, to open
the attachment. In this way we design CALO’s default behaviour to
be safe and deferential, minimizing the cost to the user of unwanted
or inappropriate proactive activity. However, Suggestion Manager
may decide not to display the suggestion, but simply go ahead and
act on its body without explicit instruction from the user. By de-
fault, it acts autonomously only when given advice it may do so,
such as, “always accept tasks delegated to me by my manager.”

We have implemented other interaction modalities besides the
peripheral sidebar display depicted in Fig. 5. In order of increasing
demand of attention (and so disruptive cost if inappropriate), these
include ‘toast’ pop-up notifications, ‘CALO Chat’ instant messages,
and non-modal and modal dialog boxes, in addition to email.

The Suggestion Manager’s reasoning accounts for the user’s in-
teraction preferences, her current activity (to avoid acting or inter-
rupting out of context), the potential consequences of its actions
(cost, reversibility), the certainty of its information (e.g., confi-
dence of workflow state), and adjustable autonomy permissions.
It performs a cost–benefit computation with adaptive weights and,
currently, fixed rules. CALO therefore acts, asks, suggests, or does
nothing, in order to assist and (it is hoped) not irritate the user [18,
10]. Future work is to enhance the reasoning, drawing on more
sophisticated models pioneered in other systems (e.g., [19]).
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6. CONCLUSION
Proactive behaviour by an assistive agent — which encompasses

more than acting directly to achieve an assigned task — promises to
make such an agent more helpful to its user. We have characterized
the properties desired of such behaviour, and presented an extended
agent cognition model that features a meta-level layer charged with
identifying potentially helpful actions and determining when it is
appropriate to perform them. The meta-reasoning that answers
these questions draws on a theory of proactivity that describes user
desires, a model of helpfulness, and conditions under which it is
safe to perform actions. Assistance patterns represent a compiled
form of this knowledge that instantiates this meta-reasoning over
the agent’s beliefs about the user’s mental state and actions as well
as over world state. We have implemented the resulting generic
framework for proactive goal generation as part of the CALO per-
sonalized assistant agent. The implemented framework is informed
by a broad range of services in the CALO system, including sophis-
ticated workflow recognition that informs the agent’s beliefs about
the user’s state and action.

Helpful proactive assistance beholds significant technical chal-
lenges. Besides the theoretical underpinnings for a principled ap-
proach, agent behaviour must most importantly be within context
[28]. The vision of agents that operate like intuitive and courteous
butlers hinges on an understanding of the user and the world — a
combination of cognitive modelling and recognition of task activ-
ity — and of how and when to assist, lest the agent be proactive
but anything but courteous. Our implementation already draws on
activity recognition technology. Our ongoing work is to strengthen
the cost–benefit, timing, and modality reasoning of the CALO Sug-
gestion Manager, and to adapt the agent’s behaviour more subtly to
explicit and implicit user feedback. Directions for the future in-
clude a providing a logical formalism such that guarantees can be
made about agent behaviour by reasoning over APs within an in-
stantiation of the theory of helpful activity; a more sophisticated
user model including estimation of the user’s emotive state; and
the potential of building CALO towards an affective agent.
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